HOMEWORK SET #1: Due in One week

#1 (10 pts.) Find $f'(x)$ for each of the following functions:
 a) xe^{-x}
 b) $\frac{x^2}{x^2+1}$
 c) e^{3x}
 d) $(3x + 2)^{-2}$
 e) $\ln x^3$

#2 (10 pts.) Find the first and second-order partial derivatives for $f(x_1, x_2) = x_1^2 e^{x_2}$

#3 (10 pts.) Find the second-order Taylor series expansion of $\ln x$ about $x = 1$.

#4 (10 pts.) Suppose that if x dollars are spent on advertising during a given year, $k(1 - e^{-cx})$ customers will purchase a product ($c > 0$).
 a) As x grows large, the number of customers purchasing the product approaches a limit. Find this limit.
 b) Can you give an interpretation for k?
 c) Show that the sales response from a dollar of advertising is proportional to the number of potential customers who are not purchasing the product at present.

#5 (10 pts.) The present is $t = 0$. At a time t years from now, I earn income at a rate e^{2t}. How much money do I earn during the next 5 years?

#6 (10 pts.) If money is continuously discounted at a rate r% per year, then $\$1$ earned t years in the future is equivalent to e^{-rt} dollars earned at the present time. Use this fact to determine the present value of the income earned in problem #5.

#7 (10 pts.) For the following function, use Leibniz’s rule to determine $H'(y)$

$$H(y) = \int_0^y yx^2\,dx$$