Homework #4: Due in two weeks

1. (10 pts.) Consider the Discrete Time MDP with state space \{1, 2, 3\} and action space \{1, 2, 3\} with the following probability transition matrices:

\[
P(1) = \begin{pmatrix} .1 & .3 & .1 \\ 0 & .7 & .8 \\ 0 & .5 & .1 \end{pmatrix} \quad P(2) = \begin{pmatrix} .5 & .5 & 0 \\ 0 & .5 & .5 \\ 0 & .5 & .5 \end{pmatrix} \quad P(3) = \begin{pmatrix} .5 & .5 & 0 \\ .8 & 0 & .2 \\ 0 & .3 & .7 \end{pmatrix}
\]

and the following cost matrix:

\[
R = \begin{pmatrix} 30 & 10 & 40 \\ 30 & 10 & 5 \\ 20 & 50 & 10 \end{pmatrix}
\]

i) Set up the Linear Program formulation for the optimal MDP policy.

ii) Compute the optimal policy with the simplex method. You may use a computer to solve the LP but please include the print-out of the setup and solution.

2. (10 pts.) Consider a network with three arcs as shown in the following figure, Figure 1:

![3-node Network Diagram](image)

Figure 1: 3-node Network

Let \(X_i \) represent the length of arc \(i \). Suppose that \(X_i \sim \text{exp}(\lambda_i) \) are independent RVs. Compute the distribution of the shortest path from A to C.

3. (10 pts.) Consider again the network of Figure 1. Assume that \(X_i \sim \text{exp}(\lambda_i) \) are independent RVs. Compute the distribution of the longest path from node A to node C. (Assume that \(\lambda_1, \lambda_2 \) and \(\lambda_3 \) are distinct and \(\lambda_3 \neq \lambda_1 + \lambda_2 \).)

4. (10 pts.) Problem #5-21 (#5-21 in 7th edition)

5. (10 pts.) Problem #5-29 (#5-25 in 7th edition)

6. (10 pts.) Problem #5-61 (#5-58 in 7th edition)

7. (10 pts) A two-dimensional Poisson process is a process of randomly occurring points in a Euclidean plane such that

 i) the number of points in a region of area \(A \) is \(P(\lambda A) \)

 ii) the number of points in disjoint regions are independent of each other.

Consider an arbitrary point “a” in this plane. Let \(X_1 \) denote the distance from a to the nearest point. Compute the density of \(X_1 \). Hint: compute \(P\{X_1 > t\} \) first.
Homework 4

\[E(c) = \sum_{i=1}^{3} \sum_{a=1}^{2} R_{ia} \pi_{ia} \]

\[\pi_{11} + 10\pi_{12} + 40\pi_{13} + 30\pi_{21} + 10\pi_{22} + 5\pi_{23} + 20\pi_{31} + 50\pi_{32} + 10\pi_{33} \]

5.6. \[\pi_{11} + \pi_{12} + \pi_{13} + \pi_{21} + \pi_{22} + \pi_{31} + \pi_{32} + \pi_{33} = 1 \]

Minimize 30p11 + 10p12 + 40p13 + 30p21 + 10p22 + 5p23 + 20p31 + 50p32 + 10p33

s.t.
\[p11 + p12 + p13 + p21 + p22 + p23 + p31 + p32 + p33 = 1 \]
\[p11 + p12 + p13 - 3p21 - 1p31 - 5p12 - 5p13 - 8p23 = 0 \]
\[p21 + p22 + p23 - 1p31 - 8p31 - 5p22 - 5p23 - 3p32 - 3p33 = 0 \]
\[p31 + p32 + p33 - 1p31 - 5p31 - 3p22 - 5p23 - 2p33 = 0 \]

LP optimum found at step 3

Objective function value

1) 8.469388

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>VALUE</th>
<th>REDUCED COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>P11</td>
<td>0.00000</td>
<td>21.530613</td>
</tr>
<tr>
<td>P12</td>
<td>0.48978</td>
<td>0.00000000</td>
</tr>
<tr>
<td>P13</td>
<td>0.00000</td>
<td>30.00000000</td>
</tr>
<tr>
<td>P21</td>
<td>0.00000</td>
<td>22.448880</td>
</tr>
<tr>
<td>P22</td>
<td>0.00000</td>
<td>4.081633</td>
</tr>
<tr>
<td>P23</td>
<td>0.30612</td>
<td>0.00000000</td>
</tr>
<tr>
<td>P31</td>
<td>0.00000</td>
<td>7.244898</td>
</tr>
<tr>
<td>P32</td>
<td>0.00000</td>
<td>38.979591</td>
</tr>
<tr>
<td>P33</td>
<td>0.20408</td>
<td>0.00000000</td>
</tr>
</tbody>
</table>

Row slack or surplus | Dual prices
2) 0.00000 | 8.469388
3) 0.00000 | 2.040816
4) 0.00000 | 5.102041
5) 0.00000 | 0.000000

No. iterations = 3

Thus the state 2 \rightarrow 8
2 \rightarrow 3
3 \rightarrow 3

\[z = 8.46939 \]
This can be done in a brute-force manner. We use the properties of exponentials.

Let L be the length of the shortest path. If $X_3 \leq X_1$, $L = \min(X_3, X_1)$; else $L = \min(X_3, X_2) + \min(X_3 - X_1, X_2)$.

Given $X_3 \leq X_1$, $\min(X_1, X_3) \sim \exp(\lambda_1 + \lambda_2)$ and given $X_3 > X_1$, $X_3 - X_1 \sim \exp(\lambda_3)$ and $\min(X_3 - X_1, X_2) \sim \exp(\lambda_2 + \lambda_3)$.

$$P(L \leq x) = P(L \leq x | X_3 \leq X_1) P(X_3 \leq X_1) + P(L \leq x | X_3 > X_1) P(X_3 > X_1)$$

$$= P(\min(X_3, X_1) \leq x | X_3 \leq X_1) P(X_3 \leq X_1) +$$

$$P(\min(X_1, X_3) + \min(X_3 - X_1, X_2) \leq x | X_3 > X_1) P(X_3 > X_1)$$

$$= P(\exp(\lambda_1 + \lambda_3) \leq x) P(X_3 \leq X_1) + P(\exp(\lambda_1 + \lambda_3)$$

$$+ \exp(\lambda_2 + \lambda_3) \leq x) P(X_3 > X_1)$$

$$= \frac{\lambda_3}{\lambda_1 + \lambda_3} \left(1 - e^{-(\lambda_1 + \lambda_2)x}\right)$$

$$+ \frac{\lambda_1}{\lambda_1 + \lambda_3} \left\{\frac{\lambda_2 + \lambda_3}{\lambda_2 - \lambda_1} \left(1 - e^{-(\lambda_1 + \lambda_3)x}\right) + \frac{\lambda_1 + \lambda_3}{\lambda_1 - \lambda_2} \left(1 - e^{-(\lambda_2 + \lambda_3)x}\right)\right\}$$

$$= \frac{\lambda_2}{\lambda_2 - \lambda_1} \left(1 - e^{-(\lambda_1 + \lambda_3)x}\right) + \frac{\lambda_1}{\lambda_1 - \lambda_2} \left(1 - e^{-(\lambda_2 + \lambda_3)x}\right).$$

Let L be the length of the longest path.

$$P(L \leq x) = P(\max(X_1, X_2, X_3) \leq x)$$

$$= P(X_1 + X_2 \leq x, X_3 \leq x)$$

$$= P(X_1 + X_2 \leq x) P(X_3 \leq x)$$

$$= \left(1 - \frac{\lambda_2}{\lambda_2 - \lambda_1} e^{\lambda_1 x} - \frac{\lambda_1}{\lambda_1 - \lambda_2} e^{\lambda_2 x}\right) (1 - e^{\lambda_3 x}).$$
\[\text{E}[\text{time}] = \text{E}[\text{time waiting at 1}] + \frac{1}{M_1} + \text{E}[\text{time waiting at 2}] + \frac{1}{M_2} \]

Now
\[\text{E}[\text{time waiting at 1}] = \frac{1}{M_1} \]
\[\text{E}[\text{time waiting at 2}] = \left(\frac{1}{M_2}\right) \frac{M_1}{M_1 + M_2} \]

The latter equation follows by conditioning on whether or not the customer waits for server 2. Therefore
\[\text{E}[\text{time}] = \frac{2}{M_1} + \left(\frac{1}{M_2}\right) \left[1 + \frac{M_1}{M_1 + M_2}\right] \]

\[\frac{\lambda}{\lambda + M_A} \]

(b) \[\frac{\lambda + M_A}{\lambda + M_A + M_B} \cdot \frac{\lambda}{\lambda + M_B} \]

\[\text{Poisson with mean } cG(t) \]
\[\text{Poisson with mean } c[1 - G(t)] \]
\[\text{Independent} \]

Note that \(X > t \) if and only if there are no points in a circle of radius \(t \) centered at \(a \), i.e., in a region of area \(\pi t^2 \). Since the number of points in this region is \(P(\lambda \pi t^2) \), we can see that the desired probability is \(\exp\{-\lambda \pi t^2\} \).